Direct action pressure reducing valve

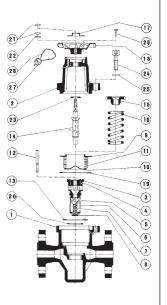
Thread connection Flange connection

Model 513 Model 514

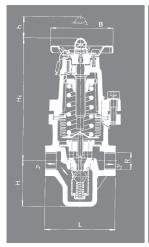
For steam and gases. (For liquids, consult our technical department). Suitable for application in; ironing machines, laundries and dry cleaners', cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

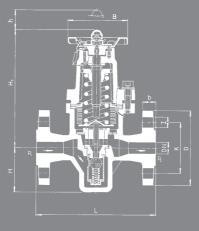
Specifications

- Materials carefully selected for resistance to wear, extreme temperatures and corrosion. They can be fully recycled, and use a single, non-metallic, asbestos-free joint.
- Simplicity of design, ensuring minimum maintenance requirements.
- Easy installation; may be assembled in any position, even upside down.
- Moderate weight and size.
- Interior design conceived for maximum capacity and performance for size
- Easy to adjust. The valves are supplied unregulated, but with the corresponding spring, duly identified, for the required pressure reduction.
- Rating plate which identifies the regulation field.
- Three springs, easily interchangeable and identified by colour and code.
- Anchoring system immune to vibrations; may be sealed to prevent manipulation.
- Selft-centring lock, independent of axle, designed to guarantee absolue precision of regulation at the most demanding points.
- Protective filter for the locking surfaces.
- High degree of airtightness of the lock at zero consumption, exceeding the requirements of DIN-3230. Page 3.
- Stainless steel bellows welded to the plasma. Airtightness tested with helium, ensuring absolute reliability and long life.
- All valves undergo throrough testing.
- Each component is numbered, registered and inspected. If previously requested, the valve will be accompanied by certificates corresponding to materials, batch, tests and performance.

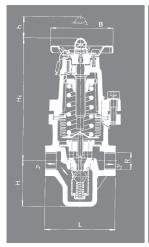

IMPORTANT

Depending on demand:


- May be manufactured using other materials for specific working conditions (high temperatures, fluids, etc.).
- Other connections.
- Degreased and completely free of oils and greases.


N°. DIFOE		DIEGE		MATERIAL	
PIECE		PIECE	NODULAR IRON	CARBON STEEL	STAINLESS STEEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Cap Bellows Bellows Bellows Axle Separa	ry spring s ring s disc s stor disc tion screw press plate heel int	Nodular iron (DIN-0.7043 GGG-40.3) Aluminium (DIN-3.2581.01 G-AISi12) Aluminium (DIN-3.2581.01 G-AISi12) Graphite PTFE (Teflón) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316T) Stainless steel (DIN-1.4704) (AISI-316L) Stainless steel (DIN-1.4704) (AISI-316L) Stainless steel (DIN-1.404) (AISI-316L) Stainless steel (DIN-1.1401) (AISI-316L) Stainless steel (DIN-1.1111 (K-45) Carbon steel (DIN-1.1410 (K-15) Carbon steel (DIN-1.404) (AISI-304) Aluminium (DIN-3.2581.01 G-AISI12) Graphite Stainless steel (DIN-1.1141 (K-15) Carbon steel (DIN-1.1141 (K-15)	Carbon steel (DIN-1.0619 GS-C 25) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Telfon) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4004) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1191 Ck-15) Chrome-silicon steel (DIN-1.4301) (AISI-304) Aluminium (DIN-3.2581.01 G-AISi12) Graphite Stainless steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15)	Stainless steel (DIN-1.4408) (AISI-316) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Teflón) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4034) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4571) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Stainless steel (DIN-1.404) (AISI-316L) Stainless steel (DIN-1.1702 (AISI-316L) Stainless steel (DIN-1.1141 CK-15) Carbon steel (DIN-1.7102 54SiCr6) Stainless steel (DIN-1.7102 S4SiCr6) Carbon steel (DIN-1.7102 S4SiCr6) Carbon steel (DIN-1.7102 S4SiCr6) Carbon steel (DIN-1.7102 S4SiCr6) Carbon steel (DIN-1.7102 S4SiCr6)
24 25 26 27 28	Screw Washer Anchoring bolt Seal		Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Lead Sealing wire	Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1141 Ck-15) Carbon steel (DIN-1.1141 Ck-15) Lead Sealing wire	Stainless steel (DIN-1.4401) (AISI-316) Stainless steel (DIN-1.4401) (AISI-316) Carbon steel (DIN-1.1141 Ck-15) Lead Sealing wire
\vdash	l	R		1/2" to 1"	
		DN		15 to 25	
		PN	25	40	40
		PRESSURE IN bar	17	17	17
	RATING	MAX. TEMP. IN °C	210	230	230
COINE	DITIONS	MIN. TEMP. IN °C	-10	-10	-60

MODEL						513	3								514	1			
	R DN		1/2			3/4			1"			15			20		25		
(CONNECTIONS		Whitworth gas-tight cyl ISO 228/1 1978 (DIN-2					ical fe	emal	е			P P	N-25 N-40	I-25 DIN-2544 I-40 DIN-2545				
	Н		57		57			57		57				57		57			
	H ₁		150)		150)		150)	150			150)	150)	
	h		25			25			25			25			25		25		
	L		85			95			105	5		150)		150)		160	
	В		75			75			75			75			75			75	
	D											95			105	5		115	
	K		-			-			_			65			75			85	
												14			14			14	
												16			18			18	
	DRILLS N°.											4			4			4	
Kgs.	NODULAR IRON		1,98	8	;	2,0	5	:	2,2	9	;	3,60)	;	3,6	5	4,73		В
EIGHT IN	CARBON STEEL	:	2,08	2,08		2,15		2,44		3,85		5	3,95		5	5,05		5	
WEIG	STAINLESS STEEL	2,13		3	2,25		5	2,55		3,95		5	4,08		5,20		Ď		
	SPRING REGULATING RANGE IN bar (REDUCED PRESSURE)		1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60
	NODULAR IRON 2001-	513.60261	513.60262	513.60263	513.63461	513.63462	513.63463	513.61061	513.61062	513.61063	514.60261	514.60262	514.60263	514.63461	514.63462	514.63463	514.61061	514.61062	514.61063
CODE	CARBON STEEL 2001-	513.80241	513.80242	513.80243	513.83441	513.83442	513.83443	513.81041	513.81042	513.81043	514.80241	514.80242	514.80243	514.83441	514.83442	514.83443	514.81041	514.81042	514.81043
	STAINLESS STEEL 2001-	513.80221	513.80222	513.80223	513.83421	513.83422	513.83423	513.81021	513.81022	513.81023	514.80221	514.80222	514.80223	514.83421	514.83422	514.83423	514.81021	514.81022	514.81023



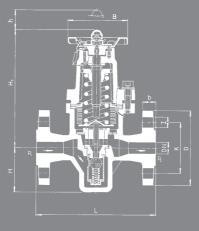


TABLE OF PRESSURES, FLOW COEFFICIENTS AND REGULATION FIELDS											
		1/2"	3/4"	1"							
		DN	15	20	25						
MAXII	MUM INPUT PR	ESSURE IN bar (P1 MAX.)		17							
MAXI	MUM REDUCTI	ON DIFFERENTIAL IN bar		P1:10							
MINIMU	JM REDUCED F	PRESSURE IN bar (P2 MIN.)		0,14							
FL	OW COEFFICIE	NT Kvs m ³ /h Δ P = 1 bar	1,50	2,50	3,00						
	0,14 to 1,70	CODE	56494								
ATING ar SURE)	0,14101,70	IDENTIFICATION COLOUR		White							
GULAT IN bar PRESS	1,40 to 4,00	CODE	56495								
SPRING RE RANGE REDUCED	1,40 to 4,00	IDENTIFICATION COLOUR	Pipik								
SPR (RED	3 50 to 9 60	CODE	56496								
	3,50 to 8,60	IDENTIFICATION COLOUR	Red								

	_		FLC							
	R N		/2" 5		/4" 20		1" 25			
	SURE	I - Satu	rated stear	m in Kg/h.						
IN	bar		t 0°C and 1 ds, consult		n [Nmº/n]. ical departi	ment.				
INPUT P1	REDUCED P2	I	II	I	II	I	П			
2	0,2	6 26	8 35	7 32	9 39	10 42	14 58			
2	1,5	30	40	37	48	52	71			
	0,3	12	15	15	18	21	27			
3	1 1,5	30 42	33 54	37 52	49 67	54 73	74 101			
3	2	50	67	64	82	89	123			
	2,5	66	75	70	93	99 32	138 43			
	0,4	19 38	25 49	24 45	30 61	3 <u>2</u>	89			
4	1,5	50	67	62	82	87	121			
4	2	62	82	77	100 114	108 122	150			
	2,5 3	70 75	91 98	87 92	121	122	172 189			
	0,5	42	57	52	69	79	98			
	2	68	90	85	113 143	120	168 213			
	3	88 96	115 125	108 120	155	153 168	232			
	0,6	46	60	57	74	82	108			
_	2	74	98	92 120	123 159	132 171	181 236			
6	3	98 110	126 142	136	180	192	265			
	5	106	139	132	175	188	260			
	0,7	50	67	63	84	89	119 194			
7	3	81 104	106 135	102 131	133 171	142 182	254			
· ·	4	118	154	148	194	206	288			
	6	114	150	142	188	201	278			
	0,8 2	54 87	71 113	67 108	88 141	94 152	129 213			
8	3	112	146	138	181	196	272			
	4	129	169	162	221	227	314			
	6 0,9	138 48	180 67	173 63	253 82	245 92	338 125			
	2	90	116	120	147	157	216			
9	3	116	151	145	189	204	280			
	4 5	136 150	177 195	170 187	221 244	239 264	333 363			
	7	155	199	194	250	275	374			
	1	58	77	73	95	105	142			
	3	92 120	122 158	121 150	151 196	164 214	227 293			
10	4	142	186	178	233	250	347			
	6	170	208	212	277	297	412			
	8 1,1	178 66	229 88	220 82	286 108	307 121	426 160			
	2	96	127	123	159	171	240			
	3	130	170	162	212	227	316 380			
11	4 6	158 196	205 221	195 242	255 317	276 339	473			
	8	214	278	266	347	374	518			
	8,6	218	284	271	355	383	530			
	1,2 2	73 108	99 135	95 128	126 167	132 178	186 249			
	3	138	177	170	221	240	332			
12	4	165	214	205	268	290	398			
	6 8	206 230	268 300	255 285	332 374	360 404	492 578			
	8,6	233	305	289	380	414	579			
	1,3	85	111	106	140	148	208			
	2 3	110 141	141 185	134 175	175 231	187 249	260 343			
13	4	170	224	213	278	298	412			
	6	217	283	281	350	382	527			
	8 8,6	246 251	325 356	307 314	403 412	435 445	604 615			
	1,5	92	117	113	148	161	220			
	2	112	142	138	179	196	266			
15	3 4	144 172	187 229	177 208	236 285	252 308	348 420			
13	6	202	284	290	365	390	544			
	8	222	336	318	419	448	626			
	8,6 1,7	240 104	343 128	355 123	428 160	459 173	639 239			
	2	116	145	141	183	196	270			
	3	147	191	181	241	258	355			
17	4 6	174 206	233 300	221 296	328 373	314 404	429 556			
	8	229	349	340	434	469	650			
	8,6	252	359	344	444	478	673			

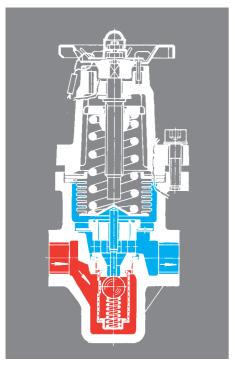

MODEL						513	3								514	1			
	R DN		1/2			3/4			1"			15			20		25		
(CONNECTIONS		Whitworth gas-tight cyl ISO 228/1 1978 (DIN-2					ical fe	emal	е			P P	N-25 N-40	I-25 DIN-2544 I-40 DIN-2545				
	Н		57		57			57		57				57		57			
	H ₁		150)		150)		150)	150			150)	150)	
	h		25			25			25			25			25		25		
	L		85			95			105	5		150)		150)		160	
	В		75			75			75			75			75			75	
	D											95			105	5		115	
	K		-			-			_			65			75			85	
												14			14			14	
												16			18			18	
	DRILLS N°.											4			4			4	
Kgs.	NODULAR IRON		1,98	8	;	2,0	5	:	2,2	9	;	3,60)	;	3,6	5	4,73		В
EIGHT IN	CARBON STEEL	:	2,08	2,08		2,15		2,44		3,85		5	3,95		5	5,05		5	
WEIG	STAINLESS STEEL	2,13		3	2,25		5	2,55		3,95		5	4,08		5,20		Ď		
	SPRING REGULATING RANGE IN bar (REDUCED PRESSURE)		1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60	0,14 a 1,70	1,40 a 4,00	3,50 a 8,60
	NODULAR IRON 2001-	513.60261	513.60262	513.60263	513.63461	513.63462	513.63463	513.61061	513.61062	513.61063	514.60261	514.60262	514.60263	514.63461	514.63462	514.63463	514.61061	514.61062	514.61063
CODE	CARBON STEEL 2001-	513.80241	513.80242	513.80243	513.83441	513.83442	513.83443	513.81041	513.81042	513.81043	514.80241	514.80242	514.80243	514.83441	514.83442	514.83443	514.81041	514.81042	514.81043
	STAINLESS STEEL 2001-	513.80221	513.80222	513.80223	513.83421	513.83422	513.83423	513.81021	513.81022	513.81023	514.80221	514.80222	514.80223	514.83421	514.83422	514.83423	514.81021	514.81022	514.81023

TABLE OF PRESSURES, FLOW COEFFICIENTS AND REGULATION FIELDS											
		1/2"	3/4"	1"							
		DN	15	20	25						
MAXII	MUM INPUT PR	ESSURE IN bar (P1 MAX.)		17							
MAXI	MUM REDUCTI	ON DIFFERENTIAL IN bar		P1:10							
MINIMU	JM REDUCED F	PRESSURE IN bar (P2 MIN.)		0,14							
FL	OW COEFFICIE	NT Kvs m ³ /h Δ P = 1 bar	1,50	2,50	3,00						
	0,14 to 1,70	CODE	56494								
ATING ar SURE)	0,14101,70	IDENTIFICATION COLOUR		White							
GULAT IN bar PRESS	1,40 to 4,00	CODE	56495								
SPRING RE RANGE REDUCED	1,40 to 4,00	IDENTIFICATION COLOUR	Pipik								
SPR (RED	3 50 to 9 60	CODE	56496								
	3,50 to 8,60	IDENTIFICATION COLOUR	Red								

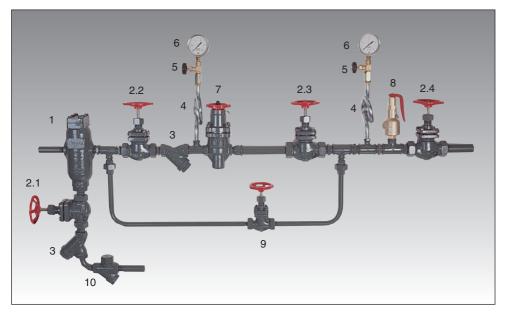
	_		FLC							
	R N		/2" 5		/4" 20		1" 25			
	SURE	I - Satu	rated stear	m in Kg/h.						
IN	bar		t 0°C and 1 ds, consult		n [Nmº/n]. ical departi	ment.				
INPUT P1	REDUCED P2	I	II	I	II	I	П			
2	0,2	6 26	8 35	7 32	9 39	10 42	14 58			
2	1,5	30	40	37	48	52	71			
	0,3	12	15	15	18	21	27			
3	1 1,5	30 42	33 54	37 52	49 67	54 73	74 101			
3	2	50	67	64	82	89	123			
	2,5	66	75	70	93	99 32	138 43			
	0,4	19 38	25 49	24 45	30 61	3 <u>2</u>	89			
4	1,5	50	67	62	82	87	121			
4	2	62	82	77	100 114	108 122	150			
	2,5 3	70 75	91 98	87 92	121	122	172 189			
	0,5	42	57	52	69	79	98			
	2	68	90	85	113 143	120	168 213			
	3	88 96	115 125	108 120	155	153 168	232			
	0,6	46	60	57	74	82	108			
_	2	74	98	92 120	123 159	132 171	181 236			
6	3	98 110	126 142	136	180	192	265			
	5	106	139	132	175	188	260			
	0,7	50	67	63	84	89	119 194			
7	3	81 104	106 135	102 131	133 171	142 182	254			
· ·	4	118	154	148	194	206	288			
	6	114	150	142	188	201	278			
	0,8 2	54 87	71 113	67 108	88 141	94 152	129 213			
8	3	112	146	138	181	196	272			
	4	129	169	162	221	227	314			
	6 0,9	138 48	180 67	173 63	253 82	245 92	338 125			
	2	90	116	120	147	157	216			
9	3	116	151	145	189	204	280			
	4 5	136 150	177 195	170 187	221 244	239 264	333 363			
	7	155	199	194	250	275	374			
	1	58	77	73	95	105	142			
	3	92 120	122 158	121 150	151 196	164 214	227 293			
10	4	142	186	178	233	250	347			
	6	170	208	212	277	297	412			
	8 1,1	178 66	229 88	220 82	286 108	307 121	426 160			
	2	96	127	123	159	171	240			
	3	130	170	162	212	227	316 380			
11	4 6	158 196	205 221	195 242	255 317	276 339	473			
	8	214	278	266	347	374	518			
	8,6	218	284	271	355	383	530			
	1,2 2	73 108	99 135	95 128	126 167	132 178	186 249			
	3	138	177	170	221	240	332			
12	4	165	214	205	268	290	398			
	6 8	206 230	268 300	255 285	332 374	360 404	492 578			
	8,6	233	305	289	380	414	579			
	1,3	85	111	106	140	148	208			
	2 3	110 141	141 185	134 175	175 231	187 249	260 343			
13	4	170	224	213	278	298	412			
	6	217	283	281	350	382	527			
	8 8,6	246 251	325 356	307 314	403 412	435 445	604 615			
	1,5	92	117	113	148	161	220			
	2	112	142	138	179	196	266			
15	3 4	144 172	187 229	177 208	236 285	252 308	348 420			
13	6	202	284	290	365	390	544			
	8	222	336	318	419	448	626			
	8,6 1,7	240 104	343 128	355 123	428 160	459 173	639 239			
	2	116	145	141	183	196	270			
	3	147	191	181	241	258	355			
17	4 6	174 206	233 300	221 296	328 373	314 404	429 556			
	8	229	349	340	434	469	650			
	8,6	252	359	344	444	478	673			

Area of influence of input pressure. (P₁)

Area of influence of reduced pressure. (P₂)

Operation

The operation of the reducing valve is based on the principle of direct action. The force exerted by the spring displaces the axle and maintains the locking ball open. The fluid exerts an opposite force on the hood as it passes, which tends to reduce the section of passage of the fluid through the seating. The action of the spring and reaction of the pressure on the bellows balance each other, and the reduced pressure is maintained constant.


The fluctuations in consumption affect the reduced pressure. The bellows detects these variations via the balance hole, provoking a change in the passage of fluid as a function of the established reduced pressure.

In working conditions with zero consumption, the valve remains closed and completely airtight when there is a slight increase in reduced pressure.

Installation

- Allways install the valve in a section of horizontal tubing, as close as possible to the point of consumption.
- The valve may be assembled in any position, even upside-down.
- Verify that the fluid flows in the direction indicated by the arrow on the body of the valve.
- The input and output tubes must be of the correct size and properly supported, to avoid any fall in pressure or tension.
- The output tubing should ideally have a greater diameter than the input tubing, to avoid excessive velocity of flow of the liquid.
- In accordance with the requirements of "Regulations for pressure devices ITC-MIE-AP 2 5.8", the pressure reduction facilities in steam circuits will be supplied with:
- 1- A pressure gauge with syphon tube and three end cock, in accordance with article 11 of the MIE-AP 1 instructions, "Boilers", located before and after the reduction valve.
- 2- A safety valve following the reduction valve, capable of evacuating the maximum flow of steam, which permits flow at the level regulated and adjusted to the maximum reduced pressure of service plus a maximum of 10%.

Example of installation for steam

- Condensate separator.
- 2 Interruption valve.
- 3 Filter.
- 4 Syphon tube.
- 5 Pressure gauge cock.
- 6 Pressure gauge.
- 7 Pressure reducing valve.
- 8 Safety valve.
- Interruption valve with adjusting cone.
- 10 Condensate purger.

IMPORTANT

- The distance between the pressure reducing valve 7 and the interruption valves 2.2 and 2.3 must be 8 ÷ 10 times the diameter of the tube.
- It is advisable to install the separator 11 and the condensate purger 10 using wet steam with dragging.
- We recommend that the reduction device be equipped with a by-pass and interruption valve with an adjusting cone [9].